Innovative Cell Materials and Design for 300 Mile Range EVs

Yimin Zhu, PD/PI Nanosys, Inc Palo Alto, California May 13 ~17, 2013

ES130_zhu_2013_p

Overview

Timeline

- Start: Oct. 1st, 2011
- End: Sept. 30th, 2014
- 40% complete

Budget

- Total project funding: \$8,060K
 - DOE share: \$4,840K
 - Contractor share: \$3,220K
- Funding received in FY12: \$1,520K
- Funding for FY13: \$1,806K

Barriers

- Barriers addressed
 - Performance: Low Wh/kg & Wh/L
 - Life: Poor deep discharge cycles
 - Cost: High \$/kWh
- Targets

Anode: $>700 \text{ mAh/g} \implies 1,600 \text{ mAh/g} >800 \text{ cycles}$

Cathode: 250 mAh/g \Rightarrow >260 mAh/g >800 cycle

Cell: 350 Wh/kg 800 Wh/L <150 \$/kWh

Partners

Interactions/ collaborations

LGCPI/LG Chem. and other cell manufacturers US DOE National Laboratories University of California, Berkeley Cell components manufacturers

Project Objectives

The review covers Apr. 2012 ~ Mar. 2013

Anode:

Develop a 700~1600 mAh/g Si anode (SiNANOde™) toward >800 cycles

- Demonstrate 700~1000 mAh/g SiNANOde toward >800 cycles
- Demonstrate SiNANOde with an electrode loading of 3~6mAh/cm2
- Demonstrate SiNANOde with 1600 mAh/g

Cathode:

Develop a 260 mAh/g cathode (Mn-rich) toward >800 cycles

- Improve 250~260 mAh/g cathode with capability to meet >800 cycles
- Improve cathode electrode loading and power

Cell:

Develop unique cell combining SiNANOde with >250 mAh/g cathode to eventually achieve 350 Wh/kg and 800 Wh/L, resulting in <150 \$/kWh (cell).

- Cell design toward 350 Wh/kg
- Feasibility test using single layer pouch cells
- Demonstrate real pouch cells with increased energy densities (delivered 18x cells for testing at DOE INL)

Project Milestone

Milestones in the period of Apr. 2012 ~ Mar. 2013:

- Baseline SiNANOde Cycle Life Demonstration
- SiNANOde Specific Capacity Improvement: Increase to 700~1600mAh/g and improve cycle life
- Optimization of cathode composition
- Scale-up SiNANOde manufacturing process

Overall Project Milestone Status

Kick off meeting	10/26/11	Completed
1st quarterly report	1/31/12	Completed
Initial Specifications Complete	10/31/11	Completed
Material Properties Modeled	12/30/11	Completed
Anode material batch deliveries and	Multiple On track	
Cathode material batch deliveries ar	Multiple On track	
Test Cell		Multiple On track

Delivered 18 cells with high energy density on Nov. 30th, 2012 On track systems Integration Design 9/31/12 On track

Systems Integration Design 9/31/12 On track
Test Reports Delivered to DoE Multiple On track

SES Drop-In Anode Solution

Volume production process using graphite as direct substrate for Si nanowire growth

- Cost effective and high Si utilization
- Improves dispersion within slurry and drop in process
- Si-C conductivity improvement
- Si% or anode specific capacity is controllable, focusing on 500 ~ 1600 mAh/g
- High electrode loading, i.e. 1.5g/cm³
- Good cycling performance, cycled >1000 times

SES SiNANOde Approach

vs. Hollow/Porous Approach

SES Exploit Advantages & Defeat Potential Problems of Si Nano-materials

Advantages	Overcome Potential Disadvantages	SES SiNANOde	Hollow/Porous
Better accommodation of cycling strain	High surface area leads to	Low A/V & Intact NW	High A/V; defects
Unique conversion reactions	higher self discharge & poor cycling performance	after cycling	
High interfacial charge transfer rates	Low pack density and low	Pack density similar to	Pack density lower than graphite
Short tunneling length for electronic transport	volumetric energy density	graphite	
Short diffusion length for ionic transport	Hard to be mass-produced	Mass-produced with a competing cost * high Si utilization	Difficult and expensive to commercialize

The nanowire has lower surface area/volume ratio, A/V, and hence less sidereaction with electrolyte and better cycle life

Cathode Approach

Cathode Development

- Cathode materials currently being used in PHEVs and EVs have a maximum capacity of ~ 150 mAh g-1 or less.
- Mn-rich composite cathode, can deliver an initial capacity >250 mAh g−1, expected to be significantly stable in non-aqueous electrolytes.

The high operation voltage electrolyte is being developed

- Mn-rich cathode materials (>250 mAh/g) are screened to have an attractive cathode and combine with SiNANOde
- Mn-rich cathode material surface is modified by oxide or other components to improve its electrochemical performance and stability

Cell Development Approach

Combining the attractive cathode feature with a high-capacity SiNANOde to accomplish our cell development objectives

Mn-rich cathode materials showed a reversible specific capacity as high as 268mAh/g

Full cell with high specific capacity SiNANOde showed an ICE of >91% and anode's reversible specific capacity of 1600mAh/g

- Anode

SiNANOde (Green) OUTPERFORM commercial Si nanopowder (Blue) with identical diameter due to its much lower surface area/volume ratio, better dispersion in slurry and conductivity Full cells with a baseline cathode (LCO) & a SiNANOde exhibited ~350 cycles at ~76% capacity retention, which still showed much higher anodespecific capacity over graphite anode.

An improved LCO cathode is showing better full cell performance (ongoing)

- High Capacity Anode: Cycle Life

- Increased the specific capacity of SiNANOde up to 850mAh/g by controlling Si nanowire content.
- Continuously improving the conductivity of SiNANOde and further optimizing the SiNANOde material, which has showed longer anode cycling life of ~510 cycles at 83% capacity retention at 0.3C.
- At beginning the cell has been used for various C-rate testing.

- High Energy Density Pouch Cell Performance

Discharge C-rate	Energy Density Wh/L
C/10	627
C/5	616
C/3	582

- The 8%SiNANOde pouch cell has already showed the volumetric energy density >620Wh/L in conventional 4.2 ~3.0V.
- The mid-voltage is ~3.7V.

- SiNANOde Full Cell Voltage Profile

- The voltage profile for the full cells showed a typical slope-like charging behavior between 3.0 and 4.2V though there is a shoulder between 3.8 and 3.9V.
- During discharging a clear plateau around 3.4~3.5V can be attributed to Si capacity contribution
- The full cells can be used in a typical voltage range of 3 ~ 4.2V

Technical Achievement - Less Voltage Hysteresis for SiNANOde

The hysteresis effect is less pronounced for 8%SiNANOde/LCO full cell in comparison with 8%Si power-graphite/LCO full cell

- SEM Characterization of Si Nanowires/Current Collector Post Cycling

Prior to cycling

10th cycle

100th cycle

- Si nanowire deforms to fill void areas in carbon anode material matrix
- Si nanowire remains intact and fully functional after 100% DoD cycling
- Thin SEI formed on Si nanowires

- SiNANOde SEI in SES's C1 & C1.1 Electrolyte

-C1.1 cell showed higher coulombic efficiency and better cycling performance than C1 cell

- In C1: the Si nanowires in the composite can be deteriorated faster and formed thicker SEI
- In C1.1: thin SEI or less decomposed electrolyte buildup on Si nanowires in the composite

C1.1 C1

- Cathode

- Mn-rich cathode materials, in-house and commercial ones, were screened for an optimal one (>250 mAh/g) to be combined with SiNANOde.
- Charge/discharge of the Li/Mn-rich cathode half cell in 4.6-2.5V at room temperature
- Surface modification has been tried to improve the cathode materials.

- Identification of a high voltage electrolyte is very critical in enhancing its cyclability.
- The effect of electrolyte composition on the cyclability: Cell #2 used an electrolyte tailored to have high voltage stability.

- Cell Development

To make pouch cells of SiNANOde/Mn-rich cathode in plant, the cell fabrication has been developing to achieve high energy densities and improve its processablity (ongoing)

SiNANOde	600 mAh/g	800 mAh/g	1200 mAh/g
Processable in plant 4.4 V	225 Wh/kg	240 Wh/kg	255 Wh/kg
Unprocessable in plant 4.4 V (~1300 mg/25 cm²)	255 Wh/kg	275 Wh/kg	300 Wh/kg

The 400 Wh/kg-designed cell made manually is cycled at 0.3C.
The capacity is initially fading faster, showing 55% retention at 150th cycle

The cathode material surface has been modified, which has enhanced its C-rate performance.

- Cell Development

1.3 Ah Baseline Cell with 500~600 mAh/g Anode and LCO cathode, achieved >260 Wh/kg and >600 Wh/L

The cell is Cycled at 0.5C rate (DOD 100%)

- Cell Development

- The lithium is provided by LCO cathode
- Anode potential is controlled by using Lithium metal reference electrode
- The cell shows high coulombic efficiency of 99.5~100%
- The cell gives a beginning capacity of 490mAh/g and stabilizing around 400mAh/g over 300 cycles if anode potential is in the range of 10~700mV.

- Cell Development

Thickness change of High Energy Density Pouch Cells: SiNANOde/LCO after 300 cycles

- Pouch cells have showed acceptable cell thickness change, < 14% cell swelling over 300 cycles.

- 18650 Cell Development

Superior full cell performance at high electrode loading

 SiNANOde 18650 full cell shows >1000 cycle 80% retention at 0.5C cycling though it fades faster in the first 50 cycles

- Cell Development

Self discharge and subsequent recharge is comparable (~1% less) than commercial graphite

Condition	8% Si-Composite /LCO Normalize to Graphite/LCO Control
Retention % @20°C at end of 1 month	99.6%
Realized capacity upon recharge after discharging at 20°C for 1 month	98.7%
Retention % @60°C at end of 1 week	98.7%
Realized capacity upon recharge after discharging at 60°C for 1 week	99.3%

Collaborations

- -LG CPI (Industry, within the VT program)
- -LGC (Industry, within the VT program)
- -Dow Kokam (Industry, within the VT program)
- -EaglePicher (Industry, outside the VT program)
- -AMAT (Industry, outside the VT program)
- -ANL (US DOE Laboratory, outside the VT program)
- -LBNL (US DOE Laboratory, outside the VT program)
- -University of California, Berkeley

Future Work

Focus on achieving high energy density and enhanced cycle life

Cycle Life Enhancement for 700~1000 mAh/g Anode

- Pilot-scale manufacturing quantities of SiNANOde product
- Cost-sensitivity modeling
- Optimize the SiNANOde and appropriate binders
- Develop electrolyte additives to improve cycle life
- Electrochemical analysis

Enhanced Si Capacity 1,600 mAh/g Anode

- Improve battery discharge rate performance
- Achieve high electrode loading
- Achieve a reversible specific capacity of 1,600 mAh/g

Optimization of Cathode Composition and Cell Components

- Optimize the cathode material composition
- Minimize inactive components in the cell
- Address cathode electrode activation during cell formation cycles
- Evaluate the compatibility of the developed electrolyte
- Improve the cell design to achieve high energy density and long cycle life
- Integrate the new binder and electrolyte and cell formation/testing protocol

Summary

Accomplishments

- The specific capacity of SiNANOde can be controlled in 500 ~ 1800mAh/g with an ICE of > 92%.
- Almost 100% utilization of Si capacity has been realized in the cells.
- We demonstrated > 510 cycles at 83% retention in coin cell using 700~1000 mAh/g SiNANOde.
- We demonstrated good cycling performance of >300 cycles (baseline SiNANOde/LCO) or ~1000 cycles (baseline SiNANOde/NCA).
- We achieved a reversible specific capacity of 255 mAh/g for cathode and improved its C-rate performance from 0.2C to >0.5C even at high loading.
- Pouch cells achieved 300~400Wh/kg with 1200mAh/g SiNANOde and 255mAh/g cathode.
- Pouch cells achieved 260Wh/kg and 600Wh/L with 550mAh/g SiNANOde and LCO cathode. We delivered 18 cells to U.S. DOE for evaluation.
- SiNANOde development has been extensively explored on various graphite, which will lead to a cost effective production.

Summarized achievements:

Anode Targets: 700-1000 mAh/g >800 cycles

Anode Achievement: 700~1600 mAh/g >510 cycles (ongoing)

Cathode Targets: 250 mAh/g >800 cycle

Cathode Achievement: >250 mAh/g >200 cycles (ongoing)

Battery Targets: 350 Wh/kg 800 Wh/L <150 \$/kWh (cell)

Battery Achievement: 250~400 Wh/kg 550~700 Wh/L (up to Si% and cathode)

Acknowledgements

- Team Battery at Nanosys (Silicon Energy Storage) and LGCPI/LG Chem.
- Support from the U.S. Department of Energy